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Rotational thromboelastometry (ROTEM) is a point-of-care 
viscoelastic method and enables to assess viscoelastic profiles 
of whole blood in various clinical settings. ROTEM-guided 
bleeding management has become an essential part of patient 
blood management (PBM) which is an important concept in 
improving patient safety. Here, ROTEM testing and hemostatic 
interventions should be linked by evidence-based, setting-
specific algorithms adapted to the specific patient population of 
the hospitals and the local availability of hemostatic interventions. 
Accordingly, ROTEM-guided algorithms implement the concept 
of personalized or precision medicine in perioperative bleeding 
management (‘theranostic’ approach). ROTEM-guided PBM has 
been shown to be effective in reducing bleeding, transfusion 
requirements, complication rates, and health care costs. 
Accordingly, several randomized-controlled trials, meta-analyses, 
and health technology assessments provided evidence that 
using ROTEM-guided algorithms in bleeding patients resulted in 
improved patient’s safety and outcomes including perioperative 
morbidity and mortality. However, the implementation of ROTEM 
in the PBM concept requires adequate technical and interpretation 
training, education and logistics, as well as interdisciplinary 
communication and collaboration.

Keywords: Algorithms; Bleeding management; Health care 
costs; Impedance aggregometry; Patient blood management; 
Thromboelastometry.

Introduction

Rotational thromboelastometry-guided (ROTEM-guided) bleeding 
management is an essential part of patient blood management 
(PBM) which is an important concept in improving patient safety 
[1].

The treatment of bleeding is to stop the bleeding and to avoid the 
need for massive transfusion that is associated with high morbidity 
and mortality [2–5]. Prophylactic and/or inappropriate plasma and 
platelet transfusion does not prevent bleeding and transfusion 
and is associated with worse outcomes including mortality 
[6–11]. Two-thirds of transfusion-related mortality is based 
on transfusion-related acute lung injury (TRALI), transfusion-
associated circulatory overload (TACO), and transfusion-related 
immunomodulation (TRIM) with hospital-acquired infections [12].

Ratio-based transfusion concepts do not correct coagulopathy 
and do not reduce mortality in patients with severe hemorrhage 
[13–17]. Ratio-based concepts do not stop bleeding. It just gains 
time to identify the reason for bleeding (coagulopathic and/
or surgical) and to perform adequate hemostatic interventions 
to stop bleeding. Accordingly, some centers are using a hybrid 
approach starting with a ratio-based transfusion concept until 
coagulation data are available and enable a more effective 
targeted hemostatic therapy [18].

Time is life in severe bleeding! Here, the turnaround time of 
standard laboratory coagulation tests (SLCT) is too long (30–90 
min) to guide clinical decisions [19–21]. In contrast, point-of-care 
(POC) ROTEM provides test results within 10–15 min, as shown 
in Fig. 1. Here, early amplitudes of clot firmness at 5 and 10 
min after the time to initiate clotting (coagulation time, CT), e.g., 
amplitude of clot firmness 5 min after CT (A5; actually not yet 
available in the US) and amplitude of clot firmness 10 min after 
CT (A10; early clot firmness parameter also available in the US), 
correlate very well with maximum clot firmness (MCF), plasma 
fibrinogen concentration, and platelet count and are essential for 
a short turnaround time of ROTEM analysis (Table 1 and Fig. 
2) [21–26]. POC ROTEM testing does not only enable a shorter 
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turnaround time compared to SLCTs, but these assays (such as 
FIBTEM) are also superior to SLCTs (such as plasma fibrinogen 
concentration) to predict bleeding and transfusion in several 
clinical settings [27–31].

ROTEM-guided bleeding management algorithms have been 
shown to be effective in reducing transfusion requirements, 
health care costs, and complication rates. Several randomized 
clinical trials (RCTs), meta-analyses, and health technology 
assessments provided evidence that using ROTEM-guided 
algorithms in bleeding patients resulted in improved patient’s 
safety and outcomes including perioperative morbidity and 
mortality [32–36].

Accordingly, ROTEM-guided algorithms implement the 
concept of personalized or precision medicine in perioperative 
bleeding management (‘theranostic’ approach). However, the 
implementation of ROTEM in the PBM concept requires adequate 
technical and interpretation training, education and logistics, as 
well as interdisciplinary communication and collaboration.

Fig. 1. ROTEM trace (‘temogram’) displaying the clinically most important 
parameters and their informative value. FDPs: fibrin(ogen) split products. 
Courtesy of Klaus Görlinger, Germany. Ta
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Fig. 2. Characteristic ROTEM traces. The diagnostic performance is 
increased by test combinations, (e.g., EXTEM and FIBTEM, EXTEM and 
APTEM, or INTEM and HEPTEM.) CT: coagulation time, A5: amplitude of 
clot firmness 5 min after CT, A10: amplitude of clot firmness 10 min after 
CT, MCF: maximum clot firmness, ML: maximum lysis during runtime, LI60: 
lysis index 60 min after CT, TXA: tranexamic acid (or other antifibrinolytic 

drug), FXIII: coagulation factor XIII, GPIIbIIIa-R: GPIIbIIIa-receptor,  
2.CFT: clot formation time, CPB: cardiopulmonary bypass, HLE: heparin-like 
effect, OLT: orthotopic liver transplantation, 4F-PCC: four factor prothrombin 
complex concentrate, EX: EXTEM, FIB: FIBTEM, HEP: HEPTEM, IN: INTEM. 
Courtesy of Klaus Görlinger, Germany.
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Basic Concepts of POC ROTEM-Guided 
Bleeding Management Algorithms
All presented ROTEM-guided algorithms are based on a similar 
structure. The aims of algorithms include administering the right 
hemostatic intervention(s), in the right dose (fibrinogen and platelet 
dose calculation, Table 2), at the right time (‘Treat first what kills 
first!’), and in the right sequence, as shown in Figs. 3 and 4.

The first step is always the presence or absence of clinically 
relevant bleeding and the potential need for blood transfusion. 
The second (and maybe third) step deals with important 
setting-specific issues such as fibrinolysis management and 
anticoagulation reversal (cardiovascular surgery). The next two 
steps take care for clot firmness management (fibrinogen and 
platelet transfusion).

A fibrinogen deficiency is most often associated with a prolonged 
CT in EXTEM assay (CTEX). Therefore, only if the FIBTEM clot 
amplitude in the early 5 and 10 min tracing (A5FIB or A10FIB, 
respectively) is adequate, CTEX values can be interpreted 
adequately. In other words, ROTEM results should be interpreted 
in a reasonable sequence (A5FIB prior to CTEX) as given by the 
algorithms, not according to their availability (CTEX prior to A5FIB). 
This avoids potential misinterpretation of ROTEX results. The 
other reason is that fibrinogen concentration drops down first in 
severe bleeding before thrombin generation is affected (except 
in bleeding due to anticoagulants or hemophilia). Furthermore, 
an increase in thrombin generation seems to be associated with 
a higher risk of thromboembolic complications compared to a 
substitution of substrates—in particular, fibrinogen. Therefore, 
clot firmness management,(e.g., a reduced A5FIB and A5 in 
EXTEM assay (A5EX)), should precede thrombin generation 
management, (e.g., a prolonged CTEX and CT in INTEM assay 
(CTIN)).

ROTEM reference ranges have been established for several 
populations of healthy individuals (geographically, US and non-
US), neonates, infants, children, adolescents, and adults, as 
well as for pregnant women (1st–3rd trimester and peri-partum) 
[37–42]. However, the reference ranges describing the 95% 

prediction interval for a specific population of healthy individuals 
can be used for orientation only and are not designed to predict 
bleeding or transfusion requirements.

Cut-off or trigger values (e.g., used in ROTEM algorithms) to 
guide clinical decision-making are determined in setting-specific 
observational studies by receiver operating characteristics (ROC) 
curve analysis or multivariate regression analysis [27–31,43–45].
Target values for ROTEM-guided algorithms have been validated 
by setting-specific interventional trials to assess whether a 
therapeutic intervention results in the achievement of hemostasis, 
reduction in transfusion requirements, and/or improvement in 
patient outcomes [32,45,46].

The following rules have to be considered when using ROTEM-
guided bleeding management algorithms.
•  Avoid any inappropriate blood transfusion or hemostatic 

intervention.

•  ROTEM is not designed to answer the question ‘Will this 
patient bleed?’ but ‘Why does this patient bleed?’

•  The first decision in every ROTEM-guided bleeding 
management algorithm presented in Figs. 3 and 4 is the 
clinical question whether diffuse (coagulopathic/microvascular) 
bleeding is present and blood transfusion has to be considered. 
If the answer to this clinical question is ‘No,’ the ROTEM 
algorithm ends at this point.

•  Accordingly, don’t treat pathologic laboratory results (‘numbers’) 
in the absence of bleeding (low positive predictive value of SLCTs 
[14%–24%], viscoelastic [15%–24%], and platelet function testing 
[27%–50%]) in order to avoid any overtreatment that might result 
in thromboembolic events and increased health care costs 
[31,47,48].

•  Use the high negative predictive value of viscoelastic (90–97%) 
and platelet function testing (80–95%) in ROTEM algorithms 
(that excludes reasons for bleeding). Accordingly, ‘Not-to-do 
(restrictive) POC ROTEM algorithms’ consider only hemostatic 
interventions with a high potential to stop the bleeding but 
avoid thromboembolic events (‘therapeutic window’ concept) 
[31,47,48].
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•  If both, POC viscoelastic (ROTEM delta or ROTEM sigma) and 
platelet function testing (ROTEM platelet) are normal, surgical 
bleeding has to be considered and treated adequately.

•  However, the limitations of every diagnostic device and assay 
have to be considered (e.g., effect of antiplatelet drugs and von 
Willebrand disease for viscoelastic testing) [49].

Thromboelastometry and Whole Blood Impedance 
Aggregometry Devices and Reagents
The ROTEM system includes the semi-automated ROTEM delta 
system that works with a computer-driven automated pipette and 
provides four independent channels for viscoelastic testing and, 
in combination with the ROTEM platelet module, two additional 
channels for whole blood impedance aggregometry for POC 
platelet function analysis. Accordingly, the ROTEM platelet module 
covers the blind spot of thromboelastometry. The ROTEM sigma 
device is a cartridge-based fully-automated thromboelastometry 
system, and its cartridge includes four assays (actually EXTEM C, 
FIBTEM C, INTEM C, and APTEM C [type 1 or complete cartridge] 
or EXTEM C, FIBTEM C, INTEM C, and HEPTEM C [type 2 or 
complete + hep cartridge]). Here, no pipetting is needed and the 
closed blood sampling vial can be connected to the cartridge. In 
particular, the ROTEM sigma can easily be handled at the point-of-
care by the medical staff without pipetting skills.

Three different types of reagents are used in the ROTEM system. 
First, there are the so-called liquid reagents (LR) for the ROTEM 
delta system (Table 1) that require several pipetting steps by 
combining 1–2 different liquid reagents for each assay. Here, 
the extrinsically activated assays EXTEM, FIBTEM, and APTEM 
contain the heparin inhibitor polybrene that inactivates up to 5 IU/
ml unfractionated heparin. This enables the use and interpretation 
of these assays even under high heparin concentrations, such 
as on cardiopulmonary bypass (CPB) [50–52]. The ‘beads’ 
reagents used in the ROTEM sigma cartridges perform in the 
same way and the results are stored in the database under the 
terms EXTEM C, FIBTEM C, and APTEM C. Furthermore, the 
so-called single use reagents (SUR) are available for ROTEM 

delta and ROTEM platelet (Table 1). However, the ROTEM delta 
SURs have an important limitation:

Notably, the SURs for the assays EXTEM S, FIBTEM S, and 
APTEM S do not contain a heparin inhibitor. Therefore, SURs must 
not be used in patients treated with unfractionated heparin (UFH) 
(e.g., in cardiovascular surgery or in patients with therapeutic 
anticoagulation with UFH) as well as in patients in whom a 
significant endogenous liberation of heparinoids can be expected 
(e.g., after graft reperfusion in liver transplantation or in patients 
with severe shock). UFH can result in prolonged CT and clot 
formation time (CFT) as well as in reduced clot firmness (A-values 
and MCF) by using SURs in these settings. A heparin effect can 
be verified by the test combination INTEM (S) and HEPTEM (S).

All HEPTEM assays (LR, SUR, and C [cartridge-based assay for 
ROTEM sigma]) contain heparinase that eliminates up to 7 IU/
ml heparin and can therefore be used in blood samples with high 
heparin concentrations [50,51].

The most important ROTEM parameters used in bleeding 
management algorithms are explained in Fig. 1, and characteristic 
ROTEM traces are displayed in Fig. 2.

ROTEM-Guided Algorithms in Different Clinical  
Settings in Cardiovascular Surgery
Most patients undergoing cardiac surgery already might get 
antifibrinolytic drugs prophylactically according to a local protocol. 
In this case, ROTEM-guided management of fibrinolysis is of 
minor importance.

In complex cardiac surgery, heparin-neutralization in liquid 
reagents (ROTEM delta) and cartridges (ROTEM sigma) 
allows for ROTEM analysis in blood samples with high heparin 
concentrations at the end of CPB, (e.g., at aortic declamping)
[32,46,52–55]. This enables the timely ordering of blood products 
such as cryoprecipitate and platelet concentrates—in particular, 
if factor concentrates such as fibrinogen concentrate are not 
available. During cardiac surgery, the time window to perform 
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hemostatic interventions is limited to 30–45 min between heparin-
reversal by protamine and chest closure/transport of the patient to 
the intensive care unit (ICU). Therefore, a short turnaround time of 
POC testing and a short ‘time-to-treat’ are most important in this 
setting.

Detection of a residual heparin effect or a protamine overdose 
is essential in cardiovascular surgery before other hemostatic 
interventions are considered (step 3 of the algorithm in Fig. 3A). 
Notably, a prolonged activated clotting time (ACT) is not specific 
for a residual heparin effect. In centers using a 1 : 1 ratio between 
the primary heparin dose and the protamine dose administered 
for heparin reversal, a protamine overdose might even be more 
often the reason for an elusive ACT prolongation. Ichikawa et al. 
[56] reported a very weak correlation between ACT (r = 0.12) as 
well as activated partial thromboplastin time (APTT) (r = 0.36) 
and the heparin concentration determined by the anti-Xa activity. 
In contrast, the CTIN/CTHEP-ratio correlated well (r = 0.72) with the 
anti-Xa activity. Furthermore, Ichikawa et al. demonstrated that 
an anti-Xa activity below 0.2

U/ml corresponding to a CTIN/CTHEP-ratio below 1.25 was not 
associated with increased postoperative mediastinal blood loss. 
In contrast, protamine overdose is not only associated with an 
elusively prolonged ACT (inhibition of factor V activation), CTIN/
CTHEP-ratio ≤ 1, but also with a significant and long-acting inhibition 
of platelet function including the adenosine diphosphate (ADP)- 
and thrombin receptor-activating peptide (TRAP)-pathway [57–
60]. RCTs confirmed that a protamine overdose is associated with 
a significant increase in blood loss, transfusion requirements, 
and need for re-surgery after cardiac surgery [61,62]. Therefore, 
a 1 : 1 ratio between primary heparin dose and protamine dose 
cannot be recommended. Here, a heparin to protamine ratio of 
1 : 0.6–0.8 seems to be more effective [56,61,62]. Additional 
protamine administration is definitively not beneficial in patients 
with a prolonged ACT due to a protamine overdose.

Furthermore, a low FIBTEM amplitude has to be considered as a 
reason for a prolonged ACT, CTIN, CTHEP, and CTEX—in particular, 
in children undergoing cardiac surgery, since fibrinogen levels 
are diluted quickly in this patient population, as described ahead 

[63]. Fibrinogen is a key factor for bleeding after cardiovascular 
surgery since it is diluted and consumed quickly during and after 
CPB. Karkouti et al. [64] demonstrated that a post-CPB fibrinogen 
level below 2 g/L—that corresponds to an A5FIB < 9 mm (A10FIB 

< 10 mm) [21]—is associated with a significantly increased 
probability of transfusion of ≥ 5 U red blood cells (RBCs). This 
is in line with the results reported by other authors [52,65] and 
the reason to set the cut-off value for fibrinogen/cryoprecipitate 
substitution to A5FIB < 9 mm in the cardiovascular algorithm. 
Ranucci et al. [66–69] demonstrated that fibrinogen substitution 
in cardiac surgery is very effective to stop bleeding in patients with 
hypofibrinogenemia but that a substitution higher than an A5FIB 
of 16 mm (corresponding to a plasma fibrinogen concentration of 
about 3 g/L) does not show any further improvement. Therefore, 
the first target in our cardiovascular algorithm is an A5FIB ≥ 12 
mm (fibrinogen concentration ≥ 2.5 g/L) and the second target 
(if bleeding continues in complex cardiovascular surgery) is an 
A5FIB ≥ 15 mm (fibrinogen concentration ≥ 3 g/L). An A5FIB ≥ 12 
mm (fibrinogen concentration ≥ 2.5 g/L) may compensate for 
thrombocytopenia (< 100/nl) or platelet dysfunction after CPB 
[53,70]. The dose calculation for fibrinogen concentrate or 
cryoprecipitate are based on the targeted increase in FIBTEM 
amplitude and presented in Table 2 [46,53,66,71,72].

Notably, neither fibrinogen nor prothrombin complex concentrate 
(PCC) or recombinant activated factor VII (rFVIIa) are magic 
bullets in bleeding management and should only be given if 
indicated by the clinical situation and ROTEM results and in an 
adequate dose as a part of a bleeding management algorithm. 

Thrombocytopenia as well as platelet dysfunction are frequent 
after cardiac surgery with CPB and have to be considered as 
a reason for intra- and post-operative bleeding. The expected 
increase in A5EX (A10EX, MCFEX) after platelet transfusion (one 
pooled or apheresis platelet concentrates in an adult patient) is 
about 8–10 mm (only about 5 mm in cirrhotic patients) (Fig. 3B) 
[73–75]. This can be used for dosing in our algorithm.

Since viscoelastic testing is not sensitive to the effects of antiplatelet 
drugs, CPB, and protamine on platelet function, POC whole blood 
impedance aggregometry (ROTEM platelet) is an ideal complement 
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to thromboelastometry in cardiovascular surgery [32,46,53,76,77]. 
Pre-operative platelet function testing can be used to detect a residual 
platelet function defect in patients treated with antiplatelet drugs or 
other drugs that might impair platelet function in order to reduce the 
waiting time until surgery after cessation of ADP-receptor antagonists 
[78–82]. However, the intra- and post-operative changes in platelet 
function seem to be more significant and important for peri-operative 
bleeding management in patients undergoing cardiac surgery with 
CPB [47,60,82–85]. Accordingly, platelet function testing results 
achieved after protamine administration demonstrated the best 
correlation with postoperative chest tube drainage and postoperative 
transfusion requirements that were dependent on the degree of 
platelet inhibition and the number of pathways inhibited [47]. The 
corresponding cut-off values for ROTEM platelet ADPTEM and 
TRAPTEM after protamine administration have been implemented 
in our cardiovascular algorithm (Fig. 3A). Notably, several studies 
and one meta-analysis demonstrated that the incorporation of POC 
platelet function testing into transfusion management algorithms 
is associated with a reduction in blood loss and transfusion 
requirements in cardiac surgery patients [32,46,54,55,86].

The last part of the algorithm deals with impaired thrombin 
generation. Here, a deficiency of coagulation factors of the 
extrinsic pathway is detected by a CTEX > 80 s in the cardiovascular 
algorithm if A5FIB is normal (≥ 9 mm). Blasi et al. [87] reported 
that a CTEX ≥ 84 s predicted the International Normalized ratio 
(INR) > 1.5 in 93% of the cases, whereas a CTEX below this value 
predicted a safe INR value of < 1.5 in 100% of cases in patients 
taking acenocoumarol after elective heart valve replacement 
(ROC AUC = 0.998). These results have been confirmed by 
Schmidt et al. [88] in patients treated with warfarin. In contrast, 
the false-negative rate for detecting warfarin coagulopathy with 
kaolin- and rapid-TEG was clinically unacceptable (45.5% and 
40.9%, respectively) [89]. The aim is to increase the activity of 
the vitamin K-dependent factors to about 40–60% that is enough 
to generate sufficient thrombin but avoids any overtreatment 
with the risk of thrombosis [48,52,71,90]. Several studies 
demonstrated that the approach of ROTEM-guided therapy 
with factor concentrates (fibrinogen and four-factor PCC)—in 
particular, in the cardiovascular setting—was associated with a 
significant risk reduction for thromboembolic events (OR [95% 

CI]: 0.44 [0.28–0.70]; P = 0.0006) [32–34,46,91,92]. In contrast 
to PCC, plasma transfusion is associated with a high incidence 
of TACO and right ventricular failure [7,11,93–95].

An A10 (US) version of the cardiovascular algorithm has been 
published in the Critical Care Handbook of the Massachusetts 
General Hospital [96].

Table 2. FIBTEM-guided Fibrinogen Substitution

Targeted increase 
in FIBTEM A5 

(A10) (mm)

Fibrinogen 
dose 

(mg/kg bw)

Fibrinogen 
concentrate 
(mL/kg bw)

Cryoprecipitate           
(mL/kg bw)

2 12.5 0.6  [1 g per 80 kg] 1  [ 5 U per 80 kg]

4 25 1.2  [2 g per 80 kg] 2  [10 U per 80 kg]

6 37.5 1.9  [3 g per 80 kg] 3  [15 U per 80 kg]

8 50 2.5  [4 g per 80 kg] 4  [20 U per 80 kg]

10 62.5 3.1  [5 g per 80 kg] 5  [25 U per 80 kg]

12 75 3.8  [6 g per 80 kg] 6  [30 U per 80 kg]

Here, fibrinogen dose calculation is based on the targeted increase in FIBTEM A5 
(A10) in mm. In case of severe bleeding, high plasma volume (e.g., in pregnancy, 
significant hemodilution, or TACO) and/or factor XIII deficiency, the achieved increase 
in FIBTEM A5 (A10) may be lower than the calculated increase. A5: amplitude of clot 
firmness 5 min after CT, A10: amplitude of clot firmness 10 min after CT, bw: body 
weight, TACO: transfusion-associated circulatory overload.
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Fig. 3A. Fig. 3B.
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Fig. 3. Evidence-based algorithms for ROTEM A5-guided bleeding 
management in (A) cardiovascular surgery and (B) liver transplantation. 
Algorithm footnotes: 1Timing of ROTEM-analysis during orthotopic liver 
transplantation (OLT): Baseline; re-check after 60 min or in case of bleeding 
during pre-anhepatic phase; 5–10 min after cava clamping (early anhepatic 
phase); 30–45 mm after cava clamping (late anhepatic phase); 5–10 min 
after reperfusion; 30–45 min after reperfusion; skin closure; and always in 
case of diffuse bleeding as well as 10–15 min after a specific hemostatic 
intervention. 2Check basic conditions: Temp. > 35°C; pH > 7.3; Cai2+ > 1 
mmol/L; Hb ≥ 7 g/dl. 3Antifibrinolytic therapy [105,107]: EACA can be used 
instead of TXA (based on local practice). CTFIB > 600 s represents a flat-line 
in FIBTEM. Only pre-anhepatic hyperfibrinolysis is associated with increased 
mortality in OLT [103]; hyperfibrinolysis at/after reperfusion without diffuse 
bleeding may be self-limiting; re-check ROTEM analysis after ML reached 
15% and consider avoidance of TXA treatment. 4Fibrinogen dose calculation 
(stepwise approach; see Table 2): Fibrinogen dose (g) = targeted increase 
in A5FIB (mm) × body weight (kg) / 160. Correction factor (140–160 mm kg/g) 
depends on the actual plasma volume. 10 U Cryoprecipitate ≈ 2 g Fibrinogen 
concentrate. 5Platelet concentrate transfusion: Cave: Platelet transfusion is 
associated with increased mortality in liver transplantation [123]! Consider 
compensation by increased A5FIB ≥ 12 mm. Cardiovascular surgery: Check 
platelet function with ROTEM platelet (ADPTEM and TRAPTEM) or Multiplate 
after weaning from CPB and heparin reversal with protamine: A5EX 23–30 
mm or ADPTEM ≤ 35 Ohm∙min: 1 pooled or apheresis platelet concentrate. 
A5EX 15–22 mm or (ADPTEM ≤ 35 Ohm∙min and TRAPTEM ≤ 45 Ohm∙min): 
2 platelet concentrates. A5EX < 15 mm: 2 platelet concentrates + fibrinogen 
substitution. 6If 4-factor prothrombin-complex-concentrate (4F-PCC) is not 
available: 10–15 ml FFP /kg bw or 45 (−90) μg rFVIIa /kg bw (if patient is 
normothermic and pH > 7.3, Cai2+ > 1 mmol/L, A5EX ≥ 30 mm, and A5FIB ≥ 
9 mm but FFP is not effective to decrease CTEX ≤ 80 s and CTHEP ≤ 280 
s). 7Anti-thrombin (AT) substitution: Consider AT substitution in patients 
with an increased risk of thrombosis (e.g., primary biliary cirrhosis, Budd-
Chiari-Syndrome, portal vein thrombosis, malignancies) and/or known pre-
existing severe AT deficiency. 8Protamine: Endogenous heparin effect after 
liver graft reperfusion usually is self-limiting and does not require reversal by 
protamine. However, consider protamine administration in severe bleeding. 
9Simultaneous interventions: Maximal three interventions at the same time 
(in first analysis and severe bleeding). Maximal two interventions at the 
same time (in second analysis and moderate to severe bleeding). Only 
one intervention at the same time (in second or later analysis and mild to 
moderate bleeding). A5EX: amplitude of clot firmness 5 min after coagulation 
time in EXTEM, CTFIB: coagulation time in FIBTEM (CTFIB > 600 s reflects a 
flat-line in FIBTEM), ML: maximum lysis (within 1 h run time), ACT: activated 
clotting time, CTIN: coagulation time in INTEM, CTHEP: coagulation time in 
HEPTEM, bw: body weight, A5FIB: amplitude of clot firmness 5 min after CT 
in FIBTEM, CTEX: coagulation time in EXTEM, PCC: prothrombin complex 
concentrate, FFP: fresh frozen plasma, LI60: Lysis Index (residual clot 

firmness in % of MCF) 60 min after CT,  LI30:  Lysis  Index  (residual clot 
firmness in % of MCF)  30 min after  CT, IU: international units, AT: anti-
thrombin, Cai2+: ionized Calcium concentration, EACA: epsilon-aminocaproic 
acid, TXA: tranexamic acid, CPB: cardiopulmonary bypass, rFVIIa: activated 
recombinant factor VII. Courtesy of Klaus Görlinger, Germany.

In Liver Transplantation and Visceral Surgery
The liver transplantation and visceral surgery ROTEM algorithm 
(Fig. 3B) has a similar structure compared to the cardiovascular 
algorithm (Fig. 3A). Both start with the clinical detection of 
diffuse bleeding and the consideration of blood transfusion, 
followed by management of fibrinolysis, clot firmness, and 
thrombin generation. However, fibrinolysis management and 
the detection of endogenous heparin-like effects are more 
important in this setting [97]. SCLT in cirrhotic patients are most 
often characterized by thrombocytopenia and an increased INR. 
However, these pathologic SCLT results are not associated with 
increased bleeding because in this patient population a re-balance 
of hemostasis has to be considered. Since this re-balance take 
place on a low level, it can be disturbed easily and can result in 
bleeding as well as in thrombosis [97]. Notably, liberal transfusion 
of blood products—in particular, plasma—is associated with 
nosocomial infections, citrate intoxication, TRALI, TACO, 
and portal hypertension that again promotes bleeding and is 
associated with increased hospital mortality [98,99]. Accordingly, 
a restrictive transfusion strategy is associated with decreased 
mortality in patients with cirrhosis and upper gastrointestinal 
bleeding [100]. It should be avoided to treat numbers of the SCLT 
results. Unnecessary plasma and platelet transfusion can lead to 
citrate intoxication, portal hypertension, and organ failure through 
TACO and TRALI.
Sixty to 80% of patients undergoing liver transplantation reveal 
fibrinolysis—most often after reperfusion of the liver graft. 
However, most of them are self-limiting within 30–180 min without 
any need for additional treatment [101–103]. Fibrinolysis during 
the resection phase (pre-anhepatic phase) is associated with 
increased 30-day (26% vs. 0%; P = 0.000) and 6-month mortality 
(32% vs. 4%; P = 0.003), and fibrinolysis after reperfusion is 
associated with thrombosis in the portal vein and hepatic arteria 
(42% vs. 8%; P = 0.002) [103]. Accordingly, administration of 
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antifibrinolytic drugs should be considered carefully—in particular, 
if fibrinolysis occurs after reperfusion—and no increase in blood 
transfusions during liver transplantation has been reported after 
the withdrawal of aprotinin [101–104]. Low clot firmness in EXTEM 
(A5EX < 25 mm) and a flat-line in FIBTEM (CTFIB > 600 s) are good 
predictors for fibrinolysis and can be used for risk analysis at the 
beginning of surgery [105,106]. Notably, FIBTEM is the most 
sensitive assay for fibrinolysis because in this assay diagnosis of 
fibrinolysis is not affected by the occurrence of platelet-mediated 
clot retraction [107,108].

Several observational studies reported cut-off values for EXTEM 
and FIBTEM clot firmness amplitudes (A5, A10, MCF) to predict 
bleeding and to guide fibrinogen substitution and platelet 
transfusion during and after liver transplantation [31,43,44,109]. 
With a cut-off value of 25 mm for A5EX (35 mm for A10EX and 
45 mm for MCFEX) and a cut-off value of 8 mm for A5FIB (9 mm 
for A10FIB and 10 mm for MCFFIB), lower levels of clot firmness 
seem to be adequate in liver transplantation compared to the 
cardiovascular, trauma, and obstetric setting. Notably, FIBTEM 
is superior to predict bleeding in liver transplantation compared 
to plasma fibrinogen concentration since it does not only 
assess the quantity of fibrinogen but also fibrin polymerization 
that is affected by dysfibrinogens, factor XIII activity, and 
colloids [110–113]. Implementation of FIBTEM-guided fibrinogen 
substitution in bleeding management algorithms during liver 
transplantation significantly reduced transfusion requirements for 
red blood cells, plasma, and platelets [31,92,97,101,114–118]. 
In contrast, preemptive administration of fibrinogen concentrate 
did not influence transfusion requirements in an RCT in liver 
transplantation [119].

ROTEM-guided platelet transfusion during liver transplantation or 
in patients with cirrhosis who had to undergo invasive procedures 
could reduce platelet transfusion by 64 to 75% compared to 
transfusion trigger of platelet count < 50 × 109/L without any 
additional bleeding events [92,97,120–122]. This is of particular 
importance since platelet transfusion during liver transplantation 
is associated with reduced 1-year survival (74 vs. 92%; P < 
0.001) [123].

INR can be used to characterize the severity of liver disease 
(e.g., in MELD score) but not to assess thrombin generation 
and bleeding risk in patients with cirrhosis [97,124–127]. Here, 
CTEX with a cut-off of 75 s is superior to predict bleeding in 
this patient population and CTEX-guidance can reduce fresh 
frozen plasma (FFP) transfusion and PCC administration 
significantly [31,97,124–129]. This helps to avoid overtreatment 
and thromboembolic events [92,97,125–130]. FFP is not effective 
in increasing thrombin generation in patients with cirrhosis but 
is associated with a high risk of TACO and portal hypertension 
[92,97,116,126,130]. In contrast to modern four-factor PCCs that 
contains significant amounts of protein C and S, rFVIIa does not 
contain any anticoagulants and has been shown to be associated 
with an increased incidence of thromboembolic events—in 
particular, arterial thrombosis—in liver transplantation and other 
clinical settings and should therefore be avoided [131,132].

Endogenous heparinization or a heparin-like effect (HLE) 
is well described in patients during liver transplantation 
[97,101,105,133,134]. A mild (CTIN/CTHEP-ratio ≥ 1.25) to severe 
(CTIN/CTHEP-ratio ≥ 2.0) HLE can be detected in about 50% after 
liver graft reperfusion (CTIN, 270–3312 s). The CTIN/CTHEP-ratio 
is more sensitive to identify HLE than APTT. Severe HLE was 
associated with increased transfusion requirements, and HLE 
during the anhepatic phase was associated with increased 
3-month mortality [135]. HLE after reperfusion is most often self-
limiting after hemodynamic stabilization [97,101]. If not, HLE can 
be reversed by small amounts of protamine [97,101,136].

Since the SURs for the assays EXTEM S, FIBTEM S, and APTEM 
S do not contain a heparin inhibitor, SURs must not be used in 
patients undergoing liver transplantation. A HLE can result in 
misinterpretation of ROTEM results due to prolonged CT and 
CFT as well as in reduced clot firmness amplitudes (A-values 
and MCF) by using SURs in this setting [97].

ROTEM results can also be used to assess the risk for thrombosis, 
and the ‘therapeutic window’ concept of ROTEM-guided bleeding 
management can be used to avoid thromboembolic complications 
[31,49,97,116,118,126,137]. Hincker et al. [137] reported that 
pre-operative APTT, INR, and platelet count were not able to 
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predict post-operative thromboembolic events after major non-
cardiac surgery. In contrast, INTEM and EXTEM A10 (A10EX 

cut-off, 61.5 mm; ROC AUC, 0.751) were the best predictors of 
thromboembolic complications. FIBTEM was not predictive for 
thromboembolic events in this study. In contrast, several studies 
in patients with cirrhosis and/or undergoing liver transplantation 
demonstrated a predictive value of increased MCFFIB (cut-off 
between 18 and 25 mm; risk ratio [RR] up to 4.8) for portal vein 
and hepatic artery thrombosis. In particular, this applies to patients 
with hereditary or acquired thrombophilia (e.g., anti-thrombin, 
protein C or protein S deficiency, factor V Leiden mutation, lupus 
anticoagulant, antiphospholipid antibodies) and patients with 
hepatocellular or cholangiocellular carcinoma [138–141]. Again, 
this emphasizes the need for a correct dose-adjustment and that 
overtreatment—also with fibrinogen—should strictly be avoided.

An A10 (US) version of the liver algorithm has been published 
recently in an US textbook about bleeding management [97].

In Trauma and Orthopedic Surgery
The trauma and orthopedic surgery ROTEM A5 algorithm is 
presented in (Fig. 3B)

In trauma, a previous RCT (CRASH-2 trial) postulated that 
tranexamic acid (TXA) should be given to all trauma patients 
with significant hemorrhage within 3 h after injury, since TXA 
administration was associated with a RR for death of 0.91 (99% 
CI, 0.85–0.97) (14.5% vs. 16.0% all-cause mortality) in this study 
[142]. However, this study demonstrated an increase in mortality 
if TXA administration was started later than 3 h after injury (RR, 
1.44; 95% CI, 1.12–1.84; 4.4% vs. 3.1% mortality due to bleeding) 
[143,144]. Accordingly, TXA should only be started later than 3 
h after injury if signs of trauma-induced coagulopathy (A5EX < 
35 mm or FIBTEM flat-line [CTFIB > 600 s]) or hyperfibrinolysis 
(EXTEM or FIBTEM maximum lysis [ML] ≥ 5% within 60 min) 
are present [105,145–147]. However, it is still under debate 
whether prophylactic or therapeutic administration of TXA should 
be performed in hospitals with access to viscoelastic testing 
[145–155]. Physiologic fibrinolysis and fibrinolysis shutdown are 
defined in ROTEM as an EXTEM LI60 82–97.9% and ≥ 98%, 

respectively [156].

Notably, FIBTEM is the most sensitive assay for fibrinolysis 
[107,157].

Davenport et al. demonstrated that acute traumatic coagulopathy 
(ATC) is functionally characterized by a reduction in ROTEM clot 
firmness amplitude [20,36,158–160]. With a cutoff value of A5EX ≤ 35 
mm, ROTEM can identify ATC at 5 min after CT and predict the need 
for massive transfusion (detection rate for A5EX ≤ 35 mm, 71% vs. 43% 
for INR > 1.2; P < 0.001). In patients with A5EX > 35 mm transfusion 
requirements were below 2 U RBC/12 h and 1 U FFP/12 h. For 
A5EX < 35 mm transfusion requirements for RBCs and FFP increase 
significantly. This allows for initiation and termination of massive 
transfusion protocols in hemorrhaging trauma patients [161,162].

In the same way Schöchl et al. [27] showed that FIBTEM (A5FIB 

and A10FIB) provided early prediction of massive transfusion (≥ 
10 U RBCs within 24 h of admission). Here, an A10FIB < 8 mm 
(plasma fibrinogen level < 150 mg/dl) was associated with an 
increased incidence of massive transfusion. An A10FIB ≤ 4 mm 
(plasma fibrinogen level < 100 mg/dl) provided a ROC AUC of 
0.83 for the prediction of massive transfusion. Furthermore, 
the crucial factor of fibrinogen for the hemostatic competence 
in trauma has been confirmed by Hagemo et al. [163], who 
detected a dramatic increase in 28-day mortality in trauma 
patients if admission fibrinogen concentration was below a critical 
value of 2.29 g/L (corresponding to an A10FIB of 12.5 mm and 
an A5FIB of 11.5 mm). These results have been confirmed by an 
international prospective validation study including 808 trauma 
patients [28]. An A5EX cut-off value of ≤ 37 mm had a detection 
rate of 66.3% for ATC. An A5EX threshold value of ≤ 40 mm 
predicted massive transfusion in 72.7%. An A5FIB cut-off value 
of ≤ 8 mm detected ATC in 67.5%, and an A5FIB cut-off value ≤ 9 
mm predicted massive transfusion in 77.5%. Accordingly, an A5EX 

and A5FIB cut-off value of 35 mm and 9 mm have been selected 
for fibrinogen substitution and platelet transfusion in our trauma 
algorithm. The same cut-off values have been recommended 
by the consensus group on viscoelastic test-based transfusion 
guidelines for early trauma resuscitation and the German AWMF 
guidelines on the management of multiple traumas [164–166]. 
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Similar cut-off values are used in the European multicenter 
RCT iTACTIC (implementing Treatment Algorithms for the 
Correction of Trauma-Induced Coagulopathy; ClinicalTrials.gov, 
ID: NCT02593877): A5FIB < 10 mm for fibrinogen substitution and 
(A5EX–A5FIB) < 30 mm for platelet transfusion [167]. This is also 
in line with the FIBTEM cut-off values published by Na et al. [29] 
to predict massive bleeding in total hip replacement arthroplasty.

Furthermore, ATC is characterized by an early platelet dysfunction 
mainly affecting the ADP and TRAP pathway in whole blood 
impedance aggregometry [168]. Chapman et al. [169] reported 
a cut-off value of 53 Ω∙min (ROC AUC, 0.97) for ROTEM platelet 
TRAPTEM and a cut-off value of 65 Ω∙min (ROC AUC, 0.88) for 
ROTEM platelet ADPTEM to predict massive transfusion (≥ 10 U 
RBCs) or death from hemorrhage within 6 h of injury. However, 
interventional studies are needed to assess whether early platelet 
dysfunction in trauma can only be used as a biomarker for severe 
trauma or to guide platelet transfusion in this setting [170].

Impaired thrombin generation with the need for plasma 
transfusion or four-factor PCC administration is considered 
in our trauma algorithm if CTEX > 80 s and A5FIB ≥ 9 mm 
according to the consensus group on viscoelastic test-based 
transfusion guidelines for early trauma resuscitation and the 
German AWMF guidelines on the management of multiple 
trauma [164–166]. This is also in line with the iTACTIC protocol 
[167]. In severe traumatic hemorrhage, fixed-ratio RBC and 
plasma transfusion is not effective to treat ATC and to reduce 
mortality [12–17,171]. Innerhofer et al. compared in their RCT the 
efficacy of ROTEM-guided administration of coagulation factor 
concentrates (fibrinogen, factor XIII, and four-factor PCC) versus 
plasma transfusion to treat ACT and to stop bleeding [172,173]. 
After two therapeutic loops, FFP failed in 52% to treat ATC and 
to stop bleeding and a rescue cross-over to ROTEM-guided 
administration of coagulation factor concentrates was needed. 
In contrast, ROTEM-guided administration of coagulation factor 
concentrates failed only in 4% and rescue cross-over to FFP 
transfusion was needed. Furthermore, massive transfusion rate 
(12% vs. 30%; P = 0.042), number of days on hemofiltration (11.0 
vs. 27.0; P = 0.038), multiple organ failure rate (50% vs. 66%; P = 
0.15), and venous thrombosis rate (8% vs. 18%; P = 0.22) were 

lower in the ROTEM-guided group. Accordingly, the European 
Trauma Guidelines suggest in their recommendation 33 that 
PCC or plasma be administered in the bleeding patient based 
on evidence of delayed coagulation initiation using viscoelastic 
monitoring provided that fibrinogen levels are normal [174].
Endogenous heparinization with a HLE detected by viscoelastic 
testing (CTIN/CTHEP-ratio) has been reported in 5% of patients 
with severe trauma and seems to be linked to endothelial glycocalyx 
degradation [175].

Finally, thrombosis is a big issue in trauma, orthopedics, and 
neurosurgery, and overtreatment should definitively be avoided 
by implementing the ‘therapeutic window’ concept of ROTEM-
guided bleeding management. This also includes the timely start of 
thromboprophylaxis in the post-operative period [137,172,176–178].

An A10 (US) version of the trauma algorithm has been published 
recently in an US textbook about trauma induced coagulopathy [145].

In Obstetric Surgery and Postpartum Hemorrhage
The obstetrics and postpartum hemorrhage (PPH) algorithm 
(Fig. 4B) is very similar to the trauma algorithm (Fig. 4A) but 
takes into account the shift in fibrinogen and FIBTEM reference 
ranges during pregnancy and the different A5FIB cut-off and 
target values determined for this setting in observational and 
interventional trials [41,42].

As mentioned earlier, the most often reason for PPH is uterine 
atony and placental complications (TONE and TISSUE from the 
4Ts: TONE, TISSUE, TRAUMA, THROMBIN) and hemostatic 
interventions (plasma transfusion, platelet transfusion, 
coagulation factor concentrates) should only be done in 
case of coagulopathy [179]. Accordingly, the ISTH Scientific 
Subcommittees (SSC) on Women’s Health Issues in Thrombosis 
and Haemostasis and on disseminated intravascular coagulation 
(DIC) recommend that (1) ‘if POC or laboratory test of hemostasis 
are normal, then no FFP is required’ and (2) they ‘recommend 
against the use of fibrinogen concentrate in an unmonitored or 
pre-emptive manner’ [180]. However, every severe bleeding can 
result in coagulopathy, finally. Accordingly, the management of 
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PPH is still challenging [181–183].

Notably, prepartum A5FIB and plasma fibrinogen values cannot 
predict PPH but FIBTEM at the beginning of PPH can predict 
progress of hemorrhage and transfusion requirements and can 
be used to guide hemostatic therapy in PPH [33,184–189]. Of 
course, prepartum SCLTs and ROTEM results can be helpful 
in patients with hereditary coagulation factor deficiencies [190]. 
However, hereditary issues should be known in most cases from 
medical history.

Hyperfibrinolysis most often occur in PPH with severe shock or 
in patients with amniotic fluid embolism—in the later it can be 
accompanied by DIC [191–194]. Nevertheless, it is recommended 
to give TXA early (within 3 h after labor) in patients with PPH 
based on the WOMAN trial (World Maternal Antifibrinolytic 
Trial) [144,195]. In the WOMAN trial, death from bleeding could 
be reduced by TXA (1.5% vs. 1.9%; P = 0.045; RR [95% CI], 
0.81 [0.65–1.00]). However, all-cause mortality did not change 
significantly (2.3% vs. 2.6%, P = 0.16; RR [95% CI], 0.88 [0.74–
1.05]) since an increase in sepsis (0.2% vs. 0.1%; P = 0.15; RR 
[95% CI], 1.87 [0.79–4.40]) and organ failure (0.3% vs. 0.2%; P 
= 0.29; RR [95% CI], 1.87 [0.75–2.53]) outweighed the reduction 
in mortality due to bleeding. As already reported in the CRASH-2 
trial, the benefits of TXA were most prominent if administered 
within 3 h after delivery [144,195]. Therefore, TXA should be given 
as soon as possible after onset of PPH [144,195]. A continuous 
infusion of TXA was not anymore used in the WOMAN trial [195]. 
The incidence of hyperfibrinolysis in the Nigerian subpopulation 
and the pathomechanisms responsible for the beneficial effects 
of TXA in the WOMAN trial have been assessed using ROTEM 
and whole blood impedance aggregometry [196,197].
Quick changes in plasma fibrinogen concentration and fibrin 
polymerization (FIBTEM) are key issues in the development and 
progression of severe PPH [26,30,189,198]. Here, Collins et al. 
[30] showed that A5FIB (adjusted OR [95% CI], 0.85 [0.77–0.95]; 
P = 0.02) is superior to Clauss fibrinogen (adjusted OR [95% 
CI], 0.93 [0.49–1.19]; P = 0.813) to predict progression of PPH 
to a total blood loss of more than 2500 ml. Women progressing 
to 8 U blood products (RBCs + FFP + platelets) had a median 
(IQR) fibrinogen and A5FIB of 2.1 (1.8–3.4) g/L and 12 (7–17) mm, 

respectively, compared with 3.9 (3.2–4.5) g/L and 19 (17–23) mm 
for those not progressing. Accordingly, the A5FIB cut-off value for 
our PPH algorithm was set to < 12 mm and the target to ≥ 16 
mm (discriminating point in the study 17 mm). This is in line with 
the Liverpool algorithm published by Mallaiah et al. [185] and 
the recommendations from the ISTH SSC [180]. Mallaiah et al. 
[185,199] and Smith et al. [200,201] reported in their follow up 
a significant reduction in blood transfusion (P < 0.0001), large 
volume blood transfusion (> 5 U RBCs; 11.2% vs. 28.6%; P = 
0.006), hysterectomy rate (5.6% vs. 14%; P = 0.089), TACO (0% 
vs. 9%; P < 0.001), and ICU admission (1.9% vs. 9%; P = 0.027). 
Very similar results have recently been published by Snegovskikh 
et al. [186]. Here again, the estimated blood loss, RBC, and FFP 
transfusion was significantly reduced (P < 0.001), as well as 
the hysterectomy rate (25.0% vs. 53.5%; P = 0.013), the ICU 
admission rate (3.6% vs. 43.1%; P < 0.001), and the length of 
hospitalization after delivery (4 vs. 5 days; P < 0.001). In contrast, 
preemptive treatment of PPH (estimated blood loss ≥ 1500 ml) 
with fibrinogen concentrate was not effective in an RCT since the 
mean fibrinogen concentration at randomization was 4.5 ± 1.2 g/L 
[202]. This is in agreement with the results of the OBS2 RCT that 
did not show any benefit in the subgroup administering fibrinogen 
concentrate if A5FIB was 13–15 mm. Only patients with an A5FIB ≤ 
12 mm showed a reduction in blood loss after study drug (300 ml 
vs. 700 ml) and transfusion of allogeneic blood products (1.0 vs. 
3.0 units) [203,204]. This again, confirmed the A5FIB cut-off and 
target values used in our PPH algorithm.

Impaired thrombin generation is rarely an issue in PPH but can 
occur due to ongoing bleeding and dilution (Fig. 5) or in case of 
acquired hemophilia (Fig. 6). The first issue can be treated with 
4F-PCC or FFP and the second issue with rFVIIa or activated 
PCC administration.

Since precision individualized medicine is more and more 
accepted as best practice in traumatic hemorrhage and PPH, 
ROTEM-guided management of coagulopathy in trauma and 
PPH is recommended in several national and international 
guidelines, and some authors even postulated that coagulation 
POC testing should be mandatory in the trauma emergency room 
and on the labor ward [164–166,174,188,205–213].
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Fig. 4B.
Fig. 4A.
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Fig. 4. Evidence-based algorithms for ROTEM A5-guided bleeding 
management in (A) trauma/orthopedic surgery and (B) obstetrics/
postpartum hemorrhage. Algorithm footnotes: 1Check basic conditions: 
Temp. > 35°C; pH > 7.3; Cai2+ > 1 mmol/L; Hb ≥ 7 g/dl. 2Antifibrinolytic therapy 
[105,142–146,153,157,195]: Prophylactic administration of TXA can be given 
within 3 h after trauma or delivery [142–144,195]. Continuous infusion of TXA 
can be performed in trauma [142–144]. CTFIB > 600 s represents a flat-line 
in FIBTEM. EACA can be used instead of TXA (based on local practice). 
3Fibrinogen dose calculation (stepwise approach; see Table 2): Fibrinogen 
dose (g) = targeted increase in A5FIB (mm) × body weight (kg) / 160. Correction 
factor (140–160 mm kg/g) depends on the actual plasma volume. 10 U 
Cryoprecipitate ≈ 2 g Fibrinogen concentrate. 4Platelet concentrate transfusion: 
Check platelet function with ROTEM platelet (ADPTEM and TRAPTEM) or 
Multiplate, if available [168–169]. Cave: Platelet transfusion might not improve 
platelet function in TIC [170]. Consider compensation by increased A5FIB ≥ 12 
mm. Consider TXA (25 mg/kg) and/or desmopressin (DDAVP; 0.3 μg/kg) in 
patients with dual antiplatelet therapy and/or ADPTEM < 30 Ω∙min. Expected 
increase per pooled/apheresis PC per 80 kg: 8–10 mm in A5EX. A5EX 28–35 
mm or ADPTEM < 40 Ω∙min: 1 pooled or apheresis platelet concentrate. A5EX 

20–28 mm or (ADPTEM < 40 Ω∙min and TRAPTEM < 50 Ω∙min): 2 pooled 
or apheresis platelet concentrates. A5EX < 20 mm: 2 platelet concentrates + 
fibrinogen substitution (≥ 4 g). 5If 4-factor prothrombin-complex-concentrate 
(4F-PCC) is not available: 10–15 ml FFP /kg bw or 45–90 μg rFVIIa /kg bw 
(if patient is normothermic and pH > 7.3, and Cai2+ > 1 mmol/L, and A5EX ≥ 
35 mm, and A5FIB ≥ 9 mm but FFP is not effective to decrease CTEX ≤ 80 s 
and CTHEP ≤ 240 s). Consider acquired hemophilia A in early severe bleeding, 
EXTEM and FIBTEM are normal but CTIN and CTHEP are significantly prolonged 
(see Fig. 6). Therapy: rFVIIa. 6Protamine: Endogenous HLE might occur in 
severe trauma and shock. Hemodynamic stabilization is the most important 
therapy. However, protamine administration might be considered in severe 
bleeding. 7Simultaneous interventions: Maximal three interventions at the 
same time (in first analysis and severe bleeding). Maximal two interventions 
at the same time (in second analysis and moderate to severe bleeding). Only 
one intervention at the same time (in second or later analysis and mild to 
moderate bleeding). ISS: injury severity score, TASH: trauma associated 
sever hemorrhage, A5EX: amplitude of clot firmness 5 min after coagulation 
time (CT) in EXTEM, CTFIB: CT in FIBTEM (CTFIB > 600 s reflects a flatline 
in FIBTEM), ML: maximum lysis (within 1 h run time), A5FIB: amplitude of clot 
firmness 5 min after CT in FIBTEM, bw: body weight, CTEX: CT in EXTEM, 
4F-PCC: four factor prothrombin complex concentrate, IU: international units, 
FFP: fresh frozen plasma, CTIN: CT in INTEM, CTHEP: CT in HEPTEM, PPH: 
postpartum hemorrhage, TXA: tranexamic acid, rFVIIa: activated recombinant 
factor VII, Cai2+: ionized Calcium concentration, EACA: epsilon-aminocaproic 
acid, TIC: trauma-induced coagulopathy, HLE: heparin-like effect. Courtesy 
of Klaus Görlinger, Germany.
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Fig. 5. A case of ROTEM-guided bleeding management in postpartum 
hemorrhage. The first ROTEM was performed after PPH activation of the 
anesthesia team. The first ROTEM showed already a decreased FIBTEM A5 
(4 mm) and a late hyperfibrinolysis in FIBTEM (ML 23%). Unfortunately, this 
has not been treated at this time and coagulopathy and bleeding progressed 
within the next hour. Due to the delay in treatment, the second ROTEM 
showed a fulminant hyperfibrinolysis and a flat-line in FIBTEM. Accordingly, 
2 g tranexamic acid and 4 g fibrinogen concentrate have been administered 
(calculated increase in A5FIB, 8 mm) within 20 min after the second ROTEM 
analysis and the effect has been checked with the third ROTEM analysis 
8 min later. Here, the measured increase in A5FIB was 2 mm below the 
calculated increase due to the ongoing bleeding. The prolonged EXTEM 
CT in the second ROTEM (due to the lack of fibrinogen) normalized in the 
third ROTEM (borderline results with CTEX 78 s and CTFIB 85 s). EXTEM and 
FIBTEM clot firmness (A5) improved but were still too low and associated 
with ongoing bleeding. Therefore, further 4 g fibrinogen concentrate, 2 pooled 
platelet concentrates, and 1500 IU 4F-PCC have been administered in the 
second ROTEM-guided intervention. This intervention stopped the bleeding 
and the fourth ROTEM analysis showed a normal temogram for a pregnant 
woman. The time between the second and fourth ROTEM analysis—including 

Fig. 5.

the two ROTEM-guided interventions—was 69 min and overall 6 U RBC 
and no FFP have been transfused to the patient. No TRALI, TACO, or other 
complications occurred, and the patient could be extubated after surgery and 
discharged from the ICU the next morning. PPH: postpartum hemorrhage, 
A5: amplitude of clot firmness 5 min after CT, A10: amplitude of clot firmness 
10 min after CT, ML: maximum lysis during runtime, CT: coagulation time, 
CFT: clot formation time, MCF: maximum clot firmness, 4F-PCC: four factor 
prothrombin complex concentrate, RBC: red blood cells, FFP: fresh frozen 
plasma, TRALI: transfusion-related acute lung injury, TACO: transfusion-
associated circulatory overload. Courtesy of Klaus Görlinger, Germany.
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Fig. 6. ROTEM pattern of acquired hemophilia A with inhibitors to FVIII. 
Characteristic for acquired hemophilia, this ROTEM shows a significantly 
prolonged INTEM and HEPTEM CT (460 s and 555 s, respectively) but 
short CTs in EXTEM and FIBTEM (53 s and 45 s, respectively) since the 
extrinsic and common pathway are not affected by this coagulopathy. The 
appropriate treatment is rFVIIa (recombinant activated factor VII) or activated 
PCC (FEIBA, Factor Eight Inhibitor Bypassing Activity). ST: start time, RT: 
run time, CT: coagulation time, CFT: clot formation time, α: alpha angle in °, 
A5: amplitude of clot firmness 5 min after CT, A10: amplitude of clot firmness 
10 min after CT, MCF: maximum clot firmness, ML: maximum lysis during 
runtime. Courtesy of Klaus Görlinger, Germany.

Impact on Transfusion Requirements, Patient  
Outcomes, and Health Care Costs
Implementation of ROTEM-guided bleeding management 
algorithms as an essential part of PBM resulted in significant 
reduction in bleeding, transfusion requirements, complication 
rates, and hospital costs. Here, the highest evidence is available 
for cardiovascular surgery [32–35,45,46,54,55,66,69,214–218] 
but data supporting the efficacy and safety of ROTEM-guided 
bleeding management in other clinical settings are increasing 

[12,35–36,92,101,114–118,172,185,186,189,219–228]. 
Accordingly, Deppe et al. [34] reported in their meta-analysis 
including nine RCTs, eight cohort studies and 8332 patients 
an odds ratio (OR) of 0.63 (95% CI, 0.56–0.71; P < 0.0001) for 
patients receiving allogeneic blood products, 0.63 (95% CI, 0.50–
0.78; P < 0.0001) for RBC transfusion, 0.31 (95% CI, 0.13–0.74; 
P < 0.0001) for plasma transfusion, 0.62 (95% CI, 0.42–0.92, 
P = 0.0292) for platelet transfusion, 0.56 (95% CI, 0.45–0.71; 
P  < 0.00001) for re-exploration due to postoperative bleeding, 
0.64 (95% CI, 0.31–1.30; P = 0.1345) for cerebrovascular events, 
0.77 (95% CI, 0.61–0.98; P = 0.0278) for postoperative acute 
kidney injury (AKI), and 0.44 (95% CI, 0.28–0.70; P = 0.0005) 
for thromboembolic events. Furthermore, the Cochrane analysis 
published in 2016 [35] demonstrated a RR for mortality in 
trials using ROTEM of 0.44 (95% CI, 0.21–0.93; P = 0.03) and 
in studies using TEG of 0.72 (95% CI, 0.25–2.07; P = 0.54). 
Analyzing ROTEM- and TEG-guided studies together showed 
a RR for mortality of 0.52 (95% CI, 0.28–0.95; P = 0.03). The 
Cochrane analysis also confirmed the significant reduction in 
transfusion requirements and in AKI with the need for dialysis 
(RR, 0.46; 95% CI, 0.28–0.76; P = 0.003).

Two large multi-center cohort studies analyzing transfusion 
requirements and patient outcomes before and after implementing 
PBM—including ROTEM-guided bleeding management—
recruited 129,719 and 605,046, respectively [229,230]. Here, 
Meybohm et al. [229] reported as their main outcome a relative 
reduction in mean RBC transfusion by 17% (1.05 ± 0.05 vs. 1.21 
± 0.05 units; P < 0.001) and in acute renal failure by 30% (1.67% 
vs. 2.39%; P < 0.001). Leahy et al. [230,231] demonstrated 
a reduction of RBCs, plasma, and platelets transfused per 
admission by 41% (P < 0.001), representing cost-savings of AU$ 
18,507,092 (US$ 18,078,258), corresponding to an estimated 
activity-based cost-savings of AU$ 80–100 million (US$ 78–97 
million). Furthermore, they reported risk-adjusted reductions in 
hospital-acquired infections (OR, 0.79; 95% CI, 0.73–0.86; P < 
0.001), acute myocardial infarction/stroke (OR, 0.69; 95% CI, 
0.58–0.82; P < 0.001), hospital mortality (OR, 0.72; 95% CI, 0.67–
0.77; P < 0.001), and length of hospital stay (incidence rate ratio, 
0.85; 95% CI, 0.84–0.87; P < 0.001). In summary, these large 
cohort studies including more than 700,000 patients confirmed 
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that the implementation of a PBM program including ROTEM-
guided bleeding management resulted in reduced blood product 
utilization, blood product-related cost savings, and improved 
patient outcomes.

In a meta-analysis assessing the efficacy of implementing a 
multimodal PBM program addressing each of the three PBM 
pillars including 17 studies comprising 235,779 surgical patients, 
transfusion rate was reduced by 39% (RR, 0.61; 95% CI, 055–
0.68; P < 0.00001), hospital length of stay was reduced in mean 
by 0.45 days (95% CI, 0.25–0.65 days; P < 0.00001), total 
number of complications was reduced by 20% (RR, 0.80; 95% 
CI, 0.74–0.88; P < 0.00001), and mortality rate was reduced by 
11% (RR, 0.89; 95% CI, 0.80–0.98; P = 0.02) [232].

Accordingly, European, American, and Australian perioperative 
bleeding management, trauma, and PBM guidelines recommend 
implementing PBM including POC-guided bleeding management 
algorithms [164,166,174,180,205–210,233]. The implementation 
of PBM is also supported by the Australian Government and the 
European Commission [234–237]. 

Cost-savings can be divided into transfusion-associated costs and 
cost-savings by reducing potentially preventable complications 
[33,238,239]. In a health-economic analysis including eight 
studies (five cohort studies, two RCTs, and one meta-analysis 
published between 2012 and 2017) and 755,733 patients, the 
mean calculated blood product acquisition cost-savings were 
US$ 977,703 per 1000 patients and mean calculated PPC-
related cost-savings 1,786,729 per 1000 patients [240]. Here, the 
reported cost-savings have been highest in studies focusing on 
patients with a high bleeding risk [32,218] and lowest in cohort 
studies looking at the whole patient population of hospitals 
implementing PBM [229,230].
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